To see accurate pricing, please choose your delivery country.
 
 
United States
£ GBP
All Shops

British Wildlife

8 issues per year 84 pages per issue Subscription only

British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.

Subscriptions from £33 per year

Conservation Land Management

4 issues per year 44 pages per issue Subscription only

Conservation Land Management (CLM) is a quarterly magazine that is widely regarded as essential reading for all who are involved in land management for nature conservation, across the British Isles. CLM includes long-form articles, events listings, publication reviews, new product information and updates, reports of conferences and letters.

Subscriptions from £26 per year
Academic & Professional Books  Reference  Data Analysis & Modelling  Data Analysis & Statistics

Bayesian Computation with R

Handbook / Manual
Series: Use R!
By: Jim Albert
267 pages, Figs, tabs
Publisher: Springer Nature
Bayesian Computation with R
Click to have a closer look
  • Bayesian Computation with R ISBN: 9780387922973 Edition: 2 Paperback May 2009 Not in stock: Usually dispatched within 1-2 weeks
    £54.99
    #180596
Price: £54.99
About this book Contents Customer reviews Related titles

About this book

There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry.

Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling. Algorithms written in R are used to develop Bayesian tests and assess Bayesian models by use of the posterior predictive distribution. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples.

This book is a suitable companion book for an introductory course on Bayesian methods. Also the book is valuable to the statistical practitioner who wishes to learn more about the R language and Bayesian methodology. The LearnBayes package, written by the author and available from the CRAN website, contains all of the R functions described in the book.

Contents

An introduction to R.- Introduction to Bayesian thinking.- Single parameter models.- Multiparameter models.- Introduction to Bayesian computation.- Markov chain Monte Carlo methods.- Hierarchical modeling.- Model comparision.- Regression models.- Gibbs sampling.- Using R to interface with WinBUGS.

Customer Reviews

Handbook / Manual
Series: Use R!
By: Jim Albert
267 pages, Figs, tabs
Publisher: Springer Nature
Current promotions
Best of WinterNHBS Moth TrapNew and Forthcoming BooksBuyers Guides