This two-volume book provides a comprehensive, detailed understanding of palaeoclimatology beginning by describing the "proxy data" from which quantitative climate parameters are reconstructed and finally by developing a comprehensive Earth system model able to simulate past climates of the Earth. It compiles contributions from specialists in each field who each have an in-depth knowledge of their particular area of expertise. The first volume is devoted to "Finding, dating and interpreting the evidence". It describes the different geo-chronological technical methods used in palaeoclimatology. Different fields of geosciences such as: stratigraphy, magnetism, dendrochronology, sedimentology, are drawn from and proxy reconstructions from ice sheets, terrestrial (speleothems, lakes, and vegetation) and oceanic data, are used to reconstruct the ancient climates of the Earth.
The second volume, entitled "Investigation into ancient climates", focuses on building comprehensive models of past climate evolution. The chapters are based on understanding the processes driving the evolution of each component of the Earth system (atmosphere, ocean, ice). Paleoclimatology provides both an analytical understanding of each component using a hierarchy of models (from conceptual to very sophisticated 3D general circulation models) and a synthetic approach incorporating all of these components to explore the evolution of the Earth as a global system.
As a whole Paleoclimatology provides the reader with a complete view of data reconstruction and modeling of the climate of the Earth from deep time to present day with even an excursion to include impacts on future climate.
Gilles Ramstein is a director of research at Laboratoire des Sciences du Climat et de l’Environnement (LSCE, France). His initial degree is in physics and since 1992 he has specialized in climate modeling.
Amaëlle Landais is a research director at Laboratoire des Sciences du Climat et de l’Environnement (LSCE, France). Her initial degree is in physics and chemistry and, since her PhD in 2001, she has specialised in the study of ice cores.
Nathaelle Bouttes is a research scientist at the Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL). Following the completion of her PhD in 2010 on the glacial carbon cycle, she went to the University of Reading (UK) for a 5-year postdoc on recent and future sea level changes. She then spent a year at Bordeaux (France) with a Marie–Curie Fellowship on the interglacial carbon cycle before joining the LSCE in 2016. Since then, she has specialized in understanding glacial-interglacial carbon cycle changes using numerical models and model-data comparison.
Pierre Sepulchre is a CNRS research scientist at the Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL). He completed a PhD on the Miocene climate of Africa in 2007, then went to UC Santa Cruz (USA) for a 2-year postdoctoral position working on the links between the uplift of the Andes and atmospheric and oceanic dynamics. His life-long research project at CNRS is to evaluate the links between tectonics, climate and evolution at the geological timescales, focusing on the last 100 million years.
Aline Govin is since 2015 a research associate at the Laboratoire des Sciences du Climat et de l’Environnement (LSCE, Gif sur Yvette, France). She studied Earth Sciences at the Ecole Normale Supérieure of Paris (France) and obtained in 2008 a PhD thesis in palaeoclimatology jointly issued by the University of Versailles Saint Quentin en Yvelines (France) and the University of Bergen (Norway). Before joining the LSCE, she worked for five years as a postdoctoral fellow at the Center for Marine Environmental Sciences (MARUM, University of Bremen) in Germany.