Provides broad coverage of the methodology used in the statistical investigation of environmental issues. Covers a wide range of key topics, including sampling, methods for extreme data, outliers and robustness, relationship models and methods, time series, spatial analysis, and environmental standards.
Preface. Chapter 1: Introduction. 1.1 Tomorrow is too Late! 1.2 Environmental Statistics. 1.3 Some Examples. 1.3.1 'Getting it all together'. 1.3.2 'In time and space'. 1.3.3 'Keep it simple'. 1.3.4 'How much can we take?' 1.3.5 'Over the top'. 1.4 Fundamentals. 1.5 Bibliography. PART I: EXTREMAL STRESSES: EXTREMES, OUTLIERS, ROBUSTNESS. Chapter 2: Ordering and Extremes: Applications, models, inference. 2.1 Ordering the Sample. 2.1.1 Order statistics. 2.2 Order based Inference. 2.3 Extremes and Extremal Processes. 2.3.1 Practical study and empirical models; generalized extreme value distributions. 2.4 Peaks over Thresholds and the Generalized Pareto Distribution. Chapter 3: Outliers and Robustness. 3.1 What is an Outlier? 3.2 Outlier Aims and Objectives. 3.3 Outlier Generating Models. 3.3.1 Discordancy and models for outlier generation. 3.3.2 Tests of discordancy for specific distributions. 3.4 Multiple Outliers: Masking and Swamping. 3.5 Accommodation: Outlier Robust Methods. 3.6 A Possible New Approach to Outliers. 3.7 Multivariate Outliers. 3.8 Detecting Multivariate Outliers. 3.8.1 Principles. 3.8.2 Informal methods. 3.9 Tests of Discordancy. 3.10 Accommodation. 3.11 Outliers in linear models. 3.12 Robustness in General. PART II: COLLECTING ENVIRONMENTAL DATA: SAMPLING AND MONITORING. Chapter 4: Finite Population Sampling. 4.1 A Probabilistic Sampling Scheme. 4.2 Simple Random Sampling. 4.2.1 Estimating the mean, &Xmacr;. 4.2.2 Estimating the variance, S2. 4.2.3 Choice of sample size, n. 4.2.4 Estimating the population total, XT. 4.2.5 Estimating a proportion, P. 4.3 Ratios and Ratio Estimators. 4.3.1 The estimation of a ratio. 4.3.2 Ratio estimator of a population total or mean. 4.4 Stratified (simple) Random Sampling. 4.4.1 Comparing the simple random sample mean and the stratified sample mean. 4.4.2 Choice of sample sizes. 4.4.3 Comparison of proportional allocation and optimum allocation. 4.4.4 Optimum allocation for estimating proportions. 4.5 Developments of Survey Sampling. Chapter 5: Inaccessible and Sensitive Data. 5.1 Encountered Data. 5.2 Length Biased or Size Biased Sampling and Weighted Distributions. 5.2.1 Weighted distribution methods. 5.3 Composite Sampling. 5.3.1 Attribute Sampling. 5.3.2 Continuous variables. 5.3.3 Estimating mean and variance. 5.4 Ranked Set Sampling. 5.4.1 The ranked set sample mean. 5.4.2 Optimal estimation. 5.4.3 Ranked set sampling for normal and exponential distributions. 5.4.4 Imperfect ordering. Chapter 6: Sampling in the Wild. 6.1 Quadrat Sampling. 6.2 Recapture Sampling. 6.2.1 The Petersen and Chapman estimators. 6.2.2 Capture recapture methods in open populations. 6.3 Transect Sampling. 6.3.1 The simplest case: strip transects. 6.3.2 Using a detectability function. 6.3.3 Estimating f (y). 6.3.4 Modifications of approach. 6.3.5 Point transects or variable circular plots. 6.4 Adaptive Sampling. 6.4.1 Simple models for adaptive sampling. Part III: EXAMINING ENVIRONMENTAL EFFECTS: STIMULUS RESPONSE RELATIONSHIPS. Chapter 7: Relationship: regression type models and methods. 7.1 Linear Models. 7.1.1 The linear model. 7.1.2 The extended linear model. 7.1.3 The normal linear model. 7.2 Transformations. 7.2.1 Looking at the data. 7.2.2 Simple transformations. 7.2.3 General transformations. 7.3 The Generalized Linear Model. Chapter 8: Special Relationship Models, Including Quantal Response and Repeated Measures. 8.1 Toxicology Concerns. 8.2 Quantal Response. 8.3 Bioassay. 8.4 Repeated Measures. Part IV: STANDARDS AND REGULATIONS. Chapter 9: Environmental Standards. 9.1 Introduction. 9.2 The Statistically Verifiable Ideal Standard. 9.2.1 Other sampling methods. 9.3 Guard Point Standards. 9.4 Standards Along the Cause Effect Chain. Part V: A MANY DIMENSIONAL ENVIRONMENT: SPATIAL AND TEMPORAL PROCESSES. Chapter 10: Time Series Methods. 10.1 Space and Time Effects. 10.2 Time Series. 10.3 Basic Issues. 10.4 Descriptive Methods. 10.4.1 Estimating or eliminating trend. 10.4.2 Periodicities. 10.4.3 Stationary time series. 10.5 Time Domain Models and Methods. 10.6 Frequency Domain Models and Methods. 10.6.1 Properties of the spectral representation. 10.6.2 Outliers in time series. 10.7 Point Processes. 10.7.1 The Poisson process. 10.7.2 Other point processes. Chapter 11: Spatial Methods for Environmental Processes. 11.1 Spatial Point Process Models and Methods. 11.2 The General Spatial Process. 11.2.1 Predication, interpolation and kriging. 11.2.2 Estimation of the variogram. 11.2.3 Other forms of kriging. 11.3 More about Standards Over Space and Time. 11.4 Relationship. 11.5 More about Spatial Models. 11.5.1 Types of spatial model. 11.5.2 Harmonic analysis of spatial processes. 11.6 Spatial Sampling and Spatial Design. 11.6.1 Spatial sampling. 11.6.2 Spatial design. 11.7 Spatial Temporal Models and Methods. References. Index.
In this book, Vic Barnett, a distinguished environmental statistician, provides an overview of statistical methods that have been used on such problems in the environmental sciences. (Journal of the American Statistical Association, September 2006) "...combines sound fundamentals and their applications." (European Journal of Soil Science, No.56, April 2005) "Many tables, graphs and figures illustrate the environmental applications of the statistical methods that are described." (Journal of the Royal Statistical Society, Series A, Vol.168, No.2, March 2005) "...well written...methods are illustrated with interesting examples...a comprehensive reference source for anyone working on environmental issues..." (Short Book Reviews, Vol.24, No.3, December 2004) "Statisticians should enjoy the book. The author is an extremely knowledgeable statistician, and he is writing about an application domain that he clearly knows." (Technometrics, November 2004) "An excellent book. Highly recommended." (Choice, July 2004) "...this provides an excellent sketch of the current state of development for new statistical methodologies...a valuable resource..." (Statistics in Medicine, 15th August 2005)