Click to have a closer look
About this book
Contents
Customer reviews
Biography
Related titles
About this book
This accessible reference focuses on key methodologies and applications for Bayesian models and computation. It describes parametric and nonparametric Bayesian methods for modeling, and how to use modern computational methods to summarize inferences using simulation. The book covers a wide range of topics including objective and subjective Bayesian inferences, with a variety of applications in modeling categorical, survival, spatial, spatiotemporal, Epidemiological, small area and micro array data.
Contents
1. Model Selection and Hypothesis Testing based on Objective Probabilities and Bayes Factors; 2. Bayesian Model Checking and Model Diagnostics; 3. Bayesian Nonparametric Modeling and Data Analysis: An Introduction; 4. Some Bayesian Nonparametric Models; 5. Bayesian Modeling in the Wavelet Domain; 6. Bayesian Methods for Function Estimation; 7. MCMC Methods to Estimate Bayesian Parametric Models; 8. Bayesian Computation: From Posterior Densities to Bayes Factors, Marginal Likelihoods, and Posterior Model Probabilities; 9. Bayesian Modelling and Inference on Mixtures of Distributions; 10. Variable Selection and Covariance Selection in Multivariate Regression Models; 11. Dynamic Models; 12. Elliptical Measurement Error Models - A Bayesian Approach; 13. Bayesian Sensitivity Analysis in Skew-elliptical Models; 14. Bayesian Methods for DNA Microarray Data Analysis; 15. Bayesian Biostatistics; 16. Innovative Bayesian Methods for Biostatistics and Epidemiology; 17. Modeling and Analysis for Categorical Response Data; 18. Bayesian Methods and Simulation-Based Computation for Contingency Tables; 19. Teaching Bayesian Thought to Nonstatisticians
Customer Reviews
Biography
C. R. Rao, born in India is one of this century's foremost statisticians, received his education in statistics at the Indian Statistical Institute (ISI), Calcutta. Rao is currently at Penn State as Eberly Professor of Statistics and Director of the Center for Multivariate Analysis. His research has influenced not only statistics, but also the physical, social and natural sciences and engineering.