About this book
Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications.
Key differences between methods and their respective limitations are also discussed--showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.
Contents
Foreword
Preface
Acknowledgements
1. Basic concepts of computational geodynamics
2. Finite difference methods
3. Finite volume method
4. Finite element methods
5. Spectral methods
6. Numerical methods for solving linear algebraic equations
7. Numerical methods for solving ordinary differential equations
8. Data assimilation methods
9. Parallel computing
10. Modelling of geodynamic problems
Appendix A. Definitions and relations from vector and matrix algebra
Appendix B. Spherical coordinates
Appendix C. List of computer codes and how to access them
References
Index
Customer Reviews
Biography
Alik Ismail-Zadeh is a Senior Scientist at the Karlsruhe Institute of Technology, Chief Scientist of the Russian Academy of Sciences at Moscow (RusAS), and Professor of the Institut de Physique de Globe de Paris. He graduated from the Baku State and Lomonossov Moscow State Universities before being awarded Ph.D. and Doctor of Science degrees in geophysics from RusAS. He lectures on computational geodynamics at the University of Karlsruhe, Abdus Salam International Center for Theoretical Physics in Trieste, and Moscow State University of Oil and Gas, while his research interests cover crust and mantle dynamics, basin evolution, salt tectonics, and seismic hazards. Professor Ismail-Zadeh is the recipient of the 1995 Academia Europaea Medal and the 2009 American Geophysical Union International Award, and is Secretary-General of the International Union of Geodesy and Geophysics until 2015.
Paul Tackley is Chair of the Geophysical Fluid Dynamics Group in the Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology (ETH Zurich). He received an MA from the University of Cambridge and an MS and Ph.D. from the California Institute of Technology before taking up a position in the Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics at the University of California, Los Angeles. He became a full professor there before moving to ETH Zurich in 2005, where he currently teaches courses in geodynamic modeling. Professor Tackley's research involves applying large-scale three-dimensional numerical simulations using state of the art methods and parallel supercomputers to study the structure, dynamics and evolution of the Earth and other terrestrial planets. He has served as an associate editor for various journals and is on the editorial board of Geophysical and Astrophysical Fluid Dynamics.