Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defence, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics.
The result of extensive research on the use of mathematical modelling to investigate the effects of plant defences on plant-herbivore dynamics, this book describes a toxin-determined functional response model that helps explains field observations of these interactions.
This book is intended for graduate students and researchers interested in mathematical biology and ecology.
Part I. Basic Theory and Simple Models
- Introduction
- Predator-prey interactions
- Overview of some results of plant-herbivore models
- Models with Toxin-Determined Functional Response
Part II. Applications
- Plant quality and plant defences: Parallels and differences
- Herbivore strategies: the role of plant quality and defences
- Plant toxins, Food Chains, and Ecosystems
- Fire, Herbivory, Tree Chemical Defense, and Spatial Patterns in the Boreal Forest
- Example of Mathematica Notebooks
Zhilan Feng is a Professor of Mathematics at Purdue University. She is an editor for Journal of Theoretical Biology, Mathematical Biosciences, Mathematical Biosciences and Engineering, and SIAM Journal on Applied Mathematics.
Donald L. DeAngelis is a Senior Scientist with the US U. S. Geological Survey and Adjunct Professor at the University of Miami. He is subject editor for Ecosystems and Mathematical Biosciences.