British Wildlife is the leading natural history magazine in the UK, providing essential reading for both enthusiast and professional naturalists and wildlife conservationists. Published eight times a year, British Wildlife bridges the gap between popular writing and scientific literature through a combination of long-form articles, regular columns and reports, book reviews and letters.
Conservation Land Management (CLM) ist ein Mitgliedermagazin und erscheint viermal im Jahr. Das Magazin gilt allgemein als unverzichtbare Lektüre für alle Personen, die sich aktiv für das Landmanagement in Großbritannien einsetzen. CLM enthält Artikel in Langform, Veranstaltungslisten, Buchempfehlungen, neue Produktinformationen und Berichte über Konferenzen und Vorträge.
Examples discussed included landfarming, biopiling, composting, phytoremediation and mycroremediation.
Preface. Contributors. Part I: Biomass Estimation Techniques. Rapid Detection/Identification of Microbes, Bacterial Spores, Microbial Communities, and Metabolic Activities in Environmental Matrices; D.C. White, et al. Comparison of Effective Organisms in Bioremediation Processes: Potential Use of Nucleic Acid Probes to Estimate Cyanide Degradation in Situ; M. Barclay, et al. Modern Methods for Estimating Soil Microbial Biomass and Diversity: An Integrated Approach; J.A. Harris, J. Steer. Part II: Comparison of Effective Organisms in Bioremediation Process. Recent Advances in the Biodegradation of Polycyclic Aromatic Hydrocarbons by Mycobacterium Species; C.E. Cerniglia. Toxic Metal Contamination Treatment with Microbes; G.M. Gadd. Aerobic Biodegradation of Polychlorinated Biphenyls (PCBs): The Fate, Distribution, Kinetics and Enhancement of PCB Biodegradation Efficacy in the Bacterial Cell Suspension of Pseudomonas stutzeri; K. Dercova, et al. Adsorption of Heavy Metals to Microbial Biomass: Use of Biosorption for Removal of Metals from Solutions; P. Baldrian, J. Gabriel. Nonenzymic Degradation and Decolorization of Recalcitrant Compounds; F. Nerud, et al. The Impact of Sulfonation Pattern on Indigo Degradation by Phanerochaete chrysosporium Ligninolytic Enzymes*; H. Podgornik, A. Perdih. Screening of Fungal Strains for Remediation of Water and Soil Contaminated with Synthetic Dyes*; C. Novotny, et al. Effect of Countermeasures of Radionuclide Uptake by Agricultural Plants*; N. Goncharova, P. Kislushko. Part III: Ecotoxicology and Toxicity Monitoring of Bioremediation Measures. Low-Cost Microbiotests for Toxicity Monitoring during Bioremediation of Contaminated Sites; G. Persoone, B. Chial. Application of Bioassays for Site-Specific Risk Assessment; A.P. Loibner, et al. Effect of PAH-Contaminated Soil on some Plants and Microorganisms; B. Maliszewska-Kordybach, B. Smreczak. Development of immunomicroscopic methods for bioremediation; K.C. Ruel, J.-P. Joseleau. Ecotoxicological Evaluation of PAH-Contaminated Soil Using Earthworms*; M. Bhatt, et al. Use of Bioassays in Determining the Ecotoxicity of Industrial Soils*; M.A.T. Dela Cruz, et al. Genotoxicity Estimation in Soils Contaminated with Polycyclic Aromatic Hydrocarbons after Biodegradation*; K. Malachova, et al. Ecotoxicological Hazard Assessment of Solid-Phase Samples*; L. Pˇllumaa, A. Kahru. Monitoring of Polychlorinated Biphenyls in Slovak Freshwater Sediments: Use of Semipermeable Membrane Devices*; R. Tandlich, et al. Part IV: Application of Bioremediation to Environmental Problems. Biopiles for Remediation of Petroleum-Contaminated Soil: A Polish Case Study; T. Hazen, et al. Why mycoremediations have not yet come into practice; V. Sasek. From Laboratory to Industrial Scale: Composting of Polluted Soils from Former Coal Industry and Gas Plants: Future Research Needs; H.C. Dubourguier. Plant Biotechnology for the Removal of Organic Pollutants and Toxic Metals from Wastewaters and Contaminated Sites: Phytoremediation; T. Vanek, J.-P. Schwitzguebel. Consideration of Plant Based Remediation and Restoration of Contaminated Sites Containing Heavy Metals: The Canadian Experience; T. McIntyre. Combined Removal of Oil, Toxic Heavy Metals and Arsenic from Polluted Soil; S.N. Groudev. Landfarming Framework for Sustainable Soil Bioremediation; R.C. Sims, J.L. Sims. Spent Mushroom Substrate: White Rot Fungi in Aged Creosote-Contaminated Soil*; T. Eggen. Bioremediation of PCBs from Contaminated Soil*; K. Demnerova, et al. Problems of Soil Renovation on Former Military Sites in Lithuania*; G. Ignatavicius, P. Baltrenas. The Capacity of Agricultural Soils to Auto-Regulate Bioremediation of Olive-Mill Wastewaters*; C. Ehaliotis, et al. Accumulation of Organic Contamination in Plant roots and the Influence of Plant Rhizosphere on Removal of PAH, TPH and Heavy Oil Fraction from Soil*; A. Malachowska-Jutsz, K. Miksch. Perspectives of Stable-Isotope Approaches in Bioremediation Research*; H.H. Richnow, et al. Screening of Litter-Decomposing Fungi for Degradation of Polycyclic Aromatic Hydrocarbons (PAH), Phenanthrene and benzo[a]pyrene*; A. Majcherczyk, et al. Photosystem II-Based Biosensors for Phytoremediation*; M.T. Giardi, et al. Degradation of Polychlorinated Biphenyls (PCBs) in Contaminated Soil with Horseradish Peroxidase and Peroxidase from White Radish Raphatus sativus*; G. Koller, M. Moder. Part V: Bioremediation Market Analysis. Successful Challenges during the Development and Application of Innovative Processes for the Bioremediation of Soils; D.E. Jerger. Current State of Bioremediation in the Czech Republic; V. Mateju. Subject Index. (*Initially given at the Workshop as a short volunteered presentation)